
J. Fluid Mech. (2010), vol. 655, pp. 306–326. c© Cambridge University Press 2010

doi:10.1017/S002211201000087X

Transition behaviour of weak
turbulent fountains

N. WILLIAMSON1†, S. W. ARMFIELD1 AND WENXIAN LIN2

1School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,
NSW 2006, Australia

2School of Engineering & Physical Sciences, James Cook University, Townsville,
Queensland 4811, Australia

(Received 30 November 2009; revised 10 February 2010; accepted 10 February 2010;

first published online 11 May 2010)

Numerical simulations of fully turbulent weak fountain flow are used to provide
direct evidence for the scaling behaviour of fountain flow over the Froude number
range Fr = 0.1−2.1 and Reynolds number range Re = 20–3494. For very weak flow at
Fr < 0.4, the flow mean penetration height, Zm, scales with Zm/R0 = A1Fr2/3 +A2Fr2/3

where R0 is the source radius. A1 and A2 are constants which quantify the separate
effects of the radial acceleration of fountain fluid from the source (A1) and the
backpressure from the surrounding intrusion, if present, on the upflow (A2). The
evidence presented in this work suggests that the mechanisms for the two parts in
the scaling of Zm scale with Fr2/3. The intrusion behaviour varies with the Reynolds
number (Re) but there is no Re affect on the fountain penetration height. For Re < 250
the radial intrusion flow is subcritical and has different behaviour. For Fr between 0.4
and 2.1 the effect of source momentum flux increases and the flow structure changes
to one where there is a coherent upflow and a cap region where the flow stagnates
and then reverses. The two regions have separate scaling behaviour such that the
overall height, through this transition range of Froude numbers, can be described by
Zm/R = C1Fr2/3 + C2Fr2, where C1 and C2 are constants. Over this transition range
the effect of source velocity profile is more significant than the Reynolds number
effects and the effect of inlet turbulence is minor.

1. Introduction
Turbulent fountains or negatively buoyant jets occur in many industrial and

geophysical flows. Examples include the flow of lava in magma chambers (Campbell &
Turner 1989; Bloomfield & Kerr 1998), air-conditioning and heating in large
buildings (Baines, Turner & Campbell 1990), replenishment of solar ponds (Lin &
Armfield 2000a) and volcanic eruptions. The configuration considered here has the
direction of buoyancy force directly opposed to the flow direction at the source, so
that the upwelling fluid penetrates a distance into the ambient fluid before stagnating
and then flowing back directly around itself. This flow is characterized by the Froude
number,

Fr =

(
M0UB

R0F0

)1/2

, (1.1)
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where R0 is the radius of the source. M0 and F0 are the source momentum flux and
buoyancy flux defined as

M0 =

∫ R0

0

2πr(U
2
+ U ′U ′) dr, F0 =

∫ R0

0

2πσrU dr,

where U is the local time averaged axial velocity and U ′U ′ is the streamwise normal
stress, σ is the reduced gravity between the fountain source and the ambient fluid
and is defined as σ = g(ρ0 − ρ∞)/ρ∞, with the subscript 0 indicating a quantity at the
fountain source and ∞ a property of the ambient fluid. UB = Q0/A0 is the bulk velocity
at the source with Q0 and A0 being the volume flow rate and source cross-sectional
area, respectively. The characteristic velocity resulting from (1.1) is U0 = (M0/πR2

0)
0.5

which differs from UB by a factor depending on the source velocity profile and U ′U ′.
In high Froude number flow, where Fr � 3, the buoyancy forces are weak compared

with the source momentum flux and the fountain penetrates a large distance into
the ambient fluid. The upflow behaves like a turbulent jet with strong mixing
and entrainment of ambient fluid while the downflow behaves more like a dense
plume (Baines et al. 1990; Bloomfield & Kerr 2000). Both the upflow and downflow
continue to develop along their trajectories so the flow never attains self-similarity
and the flow statistics vary with axial location and Froude number (Mizushina et al.
1982). The steady-state penetration depth Zm scales as Zm ∼ M

3/4
0 /F

1/2
0 (Turner 1966)

or in terms of the source Froude number, Zm/R0 = CFr , where C is a constant of
proportionality ranging between 2.1 and 3.06 (Turner 1966; Campbell & Turner 1989;
Baines et al. 1990; Cresswell & Szczepura 1993; Kaye & Hunt 2006; Williamson et al.
2008b; Baddour & Zhang 2009). These experimental studies and the analytical work
of Kaye & Hunt (2006) suggest that this turbulent flow regime exists for Fr � 3.
Below the tentative lower limit, over the range Fr ∼ 0–3, the fountain undergoes a
transition from buoyancy dominated ‘very weak flow’ to fully developed free shear
flow (Kaye & Hunt 2006). Within this range of Fr ∼ 0–3 there is considerable variation
in flow behaviour, which is the focus of this study. Preliminary work by the present
authors, using direct numerical simulation (DNS) of turbulent fountain flow, showed
that at Fr = 0.45 the flow is contained around the source and no ambient fluid is
drawn into the fountain core (Williamson, Armfield & Lin 2008a). At Fr =2.1 a weak
shear mixing region is established between the inner upflow, the outer downflow and
the ambient.

The change in flow behaviour described above is reflected in the scaling relations
for fountain height. Zhang & Baddour (1997) suggested two low Froude number
scalings for plane turbulent fountains, first proposing Zm = f (Q0, F0) = CQ0F

−1/3
0

giving Zm/R0 ∼ Fr2/3, and second suggesting a simple zero entrainment model which
results in Zm ∼ Fr2. Zhang & Baddour (1998) performed experiments with round
fountains over the range 850< Re < 12750 and 0.37 <Fr < 36.2. For Fr > 7 they
found the mean maximum penetration height follows Zmax/R0 = 3.06Fr but for Fr < 7
it is better represented by Zmax/R0 = 1.7Fr1.3.

Lin & Armfield (2000a) later used numerical simulations to examine laminar weak
fountain flow and found Zm/R0 ∼ Fr for round fountains over the range 0.2 � Fr �
1.0. In subsequent work they extended this work to 0.0025 � Fr � 0.2, the lowest
Froude number range examined till date, finding Zm/R0 ∼ Fr2/3 (Lin & Armfield
2000b).

Kaye & Hunt (2006) suggested a three-regime classification of round fountain
behaviour, labelling them ‘forced’ for Fr > 3, ‘weak’ for 1 <Fr < 3 and ‘very weak’
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for Fr < 1. These labels are adopted in the present work. Using an integral model
and assuming entrainment in high Froude number forced fountains is similar to
that in non-buoyant jets, they found the well-established result of Zm/R0 ∼ Fr .
For weak fountains Kaye & Hunt (2006) used the same model but assumed the
influence of entrainment to be small. This approach yielded Zm ∼ U 2

0 /σ ≡ M2
0/Q0F0

or Zm/R0 ∼ Fr2, indicating direct conversion of flow kinetic energy at the source
to potential energy, the same as the second weak model of Zhang & Baddour
(1997). For very weak fountains they proposed that the penetration height provides
the pressure head to accelerate the flow radially and related the radial outflow of
fountain fluid from the nozzle to critical flow over a weir. Using this analogy they
found Zm/R0 ∼ Fr2/3 (or Zm ∼ Q0/F

1/3
0 ), the same Froude number scaling obtained

by Lin & Armfield (2000b) and Zhang & Baddour (1997) but providing for the first
time a real physical explanation for the behaviour.

Difficulties in obtaining fully turbulent flow at low Froude number experimentally
using the usual saline/fresh water set-up at laboratory scale mean that the details
of fully turbulent flow have not yet been reported for very low Froude numbers.
Lin & Armfield (2000a ,b) covered a part of this range with their two-dimensional
axisymmetric DNS (0.0025 � Fr � 1.0) however in that work, the Reynolds number
was low (Re = 5–800). Zhang & Baddour (1998) conducted experiments down to
Fr = 0.37 and Kaye & Hunt (2006) obtained Fr ∼ 0.2, but in both cases the Reynolds
numbers appear to be low. Mizushina et al. (1982) provide high Reynolds number
flow statistics for Fr ≈ 5–260 and Cresswell & Szczepura (1993) for Fr = 3.16 flow.
The aim of this work is to provide direct evidence for fountain behaviour through
the very weak to weak transition range. We approach this problem with DNS of fully
turbulent flow over the range Fr = 0.1–1.4.

Our numerical model is described in § 2. In § 3 the general flow behaviour is
described and in § 4 the rise time and penetration height scaling results are presented.
In § 5 a momentum balance of the mean flow is used to illustrate mechanisms
governing very weak flow behaviour and quantify the Reynolds number effects. In § 6
the change in flow structure and behaviour through the very weak to weak transition
range is examined. The conclusions are summarized in § 7.

2. Numerical formulation
We use DNS to solve the Navier–Stokes equations for incompressible three-

dimensional flow and employ the Boussinesq approximation. The non-dimensional
continuity, momentum and scalar transport equations are

∂ui

∂xi

= 0, (2.1)

∂ui

∂t
+

∂(uiuj )

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂xj∂xj

− φ

Fr2
, (2.2)

∂φ

∂t
+

∂(ujφ)

∂xj

=
1

RePr

∂2φ

∂xj∂xj

, (2.3)

where Pr is the Prandtl number, the Reynolds number is defined as Re = U0R0/ν

and ν is the kinematic viscosity of the fluid. The velocity (Ui), temperature (θ),
pressure (P ), time (T ) and length (Xi) are made non-dimensional as ui = Ui/U0,
φ = (θ − θ∞)/(θ0 − θ∞), p = P/ρU 2

0 , t = T U0/R0 and xi = Xi/R0, respectively.
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Figure 1. Schematic illustration of weak flow configuration.

The discretized governing equations were solved in finite volume form on a non-
staggered Cartesian grid. The spatial derivatives were discretized using second-order
central finite differences except for the scalar advective term which is discretized
nominally by a second-order centred scheme but with the ultra-flux limiter applied
(Leonard & Mokhtari 1990). We have monitored the effect of the flux limiter carefully
and ensured that the grid is sufficiently well resolved such that the limiting only
occurs for short periods of time and predominately outside the region of interest
in the interface where scalar concentration gradients are very high. The limiter
is unfortunately necessary to prevent negative/non-physical temperature regions
occurring. The advective terms were advanced in time using the second-order Adams–
Bashforth scheme while the viscous terms were advanced using the Crank–Nicolson
scheme. A fractional step pressure correction method was used to enforce the
divergence-free constraint and update the pressure field (Armfield & Street 1999).
The Rhie–Chow momentum interpolation method was used for the cell face velocities
in the pressure solver (Armfield & Street 2002). The system of equations was solved
with the bi-cgstab (van der Vorst 1992) solver with a multi-grid Jacobi pre-conditioner
(Brandt 1977).

The computational domain is a rectangular box in which the top and sidewalls
are open boundaries. The open boundaries have a zero gradient condition for the
velocity and scalar fields and zero second derivative for the pressure correction term.
The bottom boundary is no-slip/adiabatic, except for the fountain source located in
the centre where the normal velocity and temperature are set as described below.

The configuration in this study is that of a fountain with the source aligned flush
with the bottom boundary of the domain, as illustrated in figure 1. The peculiarity of
this configuration compared with a re-entrant nozzle configuration commonly used
in experimental studies (e.g. Turner 1966; Campbell & Turner 1989; Cresswell &
Szczepura 1993; Bloomfield & Kerr 1998) is that the downflowing fluid flows across
the lower boundary as a dense intrusion. After a short transient period where the
penetration height of the fountain may fluctuate, the fountain reaches a quasi-steady
regime where the flow in and immediately around the upflow is established. With a
larger domain the intrusion would eventually become viscous and backfill onto the
fountain causing a different behaviour to exist. This study is only concerned with the
initial transient and quasi-steady regime in this flow configuration within 3–4R0 of
the source.

We perform high-Reynolds-number turbulent simulations at Pr = 0.7, Fr = 0.1–1.4
and Re =3494 (ReB = UBR0/ν = 3350), and examine the Reynolds number effects and
the effect of inlet velocity profile.

For the turbulent simulations, the inflow at the fountain source is prescribed as an
unsteady boundary condition derived from a separate DNS simulation of turbulent
pipe flow at ReB = 3350. The velocity field was recorded across a single cross-section
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Fr Pr Re Source
�X, Y

R
,
�Z

R0

× 103 Lx,y

R0

,
Lz

R0

Nx,y ,Nz

Lux,y

R0

,
Luz

R0

0.1 50 20 Uni 47, 8 12, 2 165, 101 2.5, 0.3
0.1 4 250 Uni 47, 8 12, 2 165, 101 2.5, 0.3
0.05–1.0 4 250 Uni 47, 5–8 12, 1–3.5 165, 101 2.5, 0.18–1.4
0.05–1.0 4 250 Par 47, 5–8 12, 1–3.5 165, 101 2.5, 0.18–2.1
0.1 0.7 3494 Pipe 11.5, 7 7, 2 549, 101 2.5, 0.25
0.4 0.7 3494 Pipe 12, 6.8 7, 3.5 517, 133 2.5, 0.25
0.97 0.7 3494 Pipe 13.5, 15 10, 7 389, 197 2.0, 1.7
1.4 0.7 3494 Pipe 15, 13 7, 4 389, 197 2.5, 1.8
2.1 7.0 3494 Pipe 20, 35 40, 30 210, 180 1.2, 4

Table 1. Simulation parameters, where source inlet profiles are indicated as: Uni, uniform
profile; Pipe, unsteady recording of pipe flow; Par, parabolic inlet profile. �X,Y,Z, Lx,y,z and
Nx,y,z give the grid size at the source, the domain size and the number of nodes, respectively.

of a periodic pipe flow simulation at each time step, after the simulation reached a
statistically steady state. The resolution of these simulations is 0.5–2 δv in the plane
cross-section and 3 δv in the axial direction, where δv = ν

√
ρ/τw and τw is the pipe

wall shear stress and the pipe length is 2πR0. The mean flow profile and Reynolds
stresses of this simulation compare well with the published values of Fukagata &
Kasagi (2002) at ReB = 2655. The mean centreline velocity of the flow is 1.31UB

and U0/UB = 1.043. This recording was then interpolated onto the boundary cell face
at the fountain source in the fountain simulation at each time step. This approach
ensures a high quality realistic flow, comparable with experimental data, and allows
us to quantify the importance of the inlet turbulence on fountain flow behaviour. In
all other simulations, the inflow profile is either steady parabolic or uniform. The
details of the simulations are given in table 1. The details of a Fr = 2.1 simulation
presented by Williamson et al. (2008a) are also given in the table and will be referred
to in this work. A regular Cartesian grid is used which is uniform in the horizontal
x,y-plane within a distance Lux,y of the centre of the source. Outside this region the
grid is stretched with approximately a 3 % growth rate. The grid is uniform in the
axial direction up to Luz and stretched at 3 % thereafter. The grid size at the source
is approximately 2δv for Fr = 0.1–1.4, fine enough to resolve the smallest structures
in the turbulent pipe flow solution and the fountain flow.

3. Turbulent flow behaviour
The turbulent simulations of Fr = 0.1 and Fr = 0.4 are in the very weak regime,

while the Fr = 0.97 simulation is at the transition suggested by Kaye & Hunt (2006)
and Fr = 1.4 and Fr = 2.1 are in the middle of the weak regime. Contours of φ and
pressure are given in figures 2 and 3 illustrating the flow structure at Fr =0.1 and
0.4. The flow structure at Fr = 0.97 and Fr = 1.4 is illustrated in figures 4 and 5.

At Fr = 0.1 the penetration height is very small compared with the source diameter.
Upon entry into the domain the fluid is immediately forced radially into the intrusion.
After the initial establishment of the flow, the penetration height is constant with none
of the unsteadiness from the source evident. There is negligible mixing or entrainment
into either the cap region or the fountain core. The intrusion flow forms around
the source and is supplied with a constant steady mass flux from the source. The
mixing in the intrusion interface is driven by Kelvin–Helmholtz (K–H) structures



Weak fountain flow behaviour 311

φ

φ

p

p

(a)

(c) (d)

(b)

Figure 2. Time development of Fr = 0.1, Re = 3494, Pr =0.7 simulation illustrated with
cut-away of φ together with isosurfaces of pressure at p = −3 and p = −1.8. φ shading is
from φ = 1.0 (black) to φ = 0.1 (light grey). Images (a–d ) were recorded at t =0.35, 0.5, 0.65
and 0.8, respectively.
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Figure 3. Time development of Fr = 0.4, Re = 3494, Pr =0.7 simulation illustrated with
cut-away of φ together with isosurfaces of pressure at p = −1.0 and p = −0.49. φ shading is
from φ = 1.0 (black) to φ = 0.1 (light grey). Images (a–c) were recorded at t = 0.73, 1.49 and
2.25, respectively.

which appear after t =0.5. Qualitatively the simulation compares well with the low-
Reynolds-number axisymmetric simulations of Lin & Armfield (2000a ,b), except for
the mixing in the intrusion. This is examined in § 5. The initial rise and then fall of
the fountain front produces a perturbation in the pressure field which is shown in
figures 2(a) and 3(a).

At Fr = 0.4, shown in figure 3, the fountain rises to a greater height and the
unsteadiness from the inlet boundary condition is evident as deformation of the
fountain cap at the interface with the ambient fluid. There is negligible entrainment
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Figure 4. Flow structure of Fr = 0.97, Re = 3494, Pr = 0.7 simulation at t = 16, 16.75, 17.5
and 18.25, respectively. Shading indicates φ (scale on right) and vectors are scaled to give
velocity magnitude. Thick lines give p contours of 0.05, 0.3 and 0.7, thin lines give contours of
−0.5, −0.25 and −0.05.

of ambient fluid into the fountain core. K–H vortices form in the cap region and flow
into the intrusion. They appear to be initiated by the deformation of the cap region and
then driven by shear and baroclinic torque in the outflow. The same behaviour is seen
at Fr = 0.97 and Fr =1.4 as illustrated in figures 4 and 5. In figure 4 the development
of three K–H structures is followed from an initial perturbation in figure 4(a)
through its growth in figure 4(b,c) and flow into the intrusion in figure 4(d ). One
notable difference between the Fr = 0.4–1.4 simulations and the Fr = 0.1 simulation
is the presence of a small re-circulation region surrounding the source. Ambient fluid
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Figure 5. Flow structure at Fr =1.4, Re = 3494, Pr =0.7 from t = 13.2 in increments of
�t = 3.3. Shading indicates φ (scale on right) and vectors are scaled to give velocity magnitude.
Thick lines give p contours at 0.1, 0.3 and 0.5 and thin lines contours at −0.33 and −0.05.

initially in this region is quickly advected out into the intrusion. At Fr = 0.97, the size
of the annular re-circulation region adjacent to the upflow is illustrated by the velocity
vectors in figure 4. The mixing eventually depletes the ambient fluid in this region
and no additional ambient fluid is entrained. This mixing behaviour is illustrated in
supplementary movies 1, 2 and 3 (available at journals.cambridge.org/flm).

At Fr =1.4 the re-circulation region covers more than half the overall fountain
height. The fountain fluid rises in a coherent column before stagnating in the cap
region where it is forced radially outwards in large periodic expulsions, which are
not necessarily symmetric around the source axis. The distinction from the Fr = 0.97
flow is that there is mixing of ambient fluid into the annular re-circulation region as
shown in figure 5(a–c). From figure 5(a) ambient fluid is drawn into the adjacent re-
circulation zone, then in figure 5(b) there is a large expulsion from the cap region. In
figure 5(c) the fountain rises again drawing in ambient fluid before the next downflow.
In this way the oscillation in fountain height, the accumulation and expulsion of fluid
from the cap region and the entrainment of ambient fluid operate on the same cycle
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Figure 6. Flow structure of Fr =2.1, Re = 3494, Pr = 7.0 flow at t =35. Shading indicates φ
(scale on right) and vectors are scaled to give relative velocity magnitude. Thick lines indicate
p contours of 0.03 and 0.25; thin lines give p contours of −0.25 and −0.03.

which has approximately the same period as one overturn of the re-circulation region,
t ∼ 6–7 for Fr =1.4. The time trace of this behaviour is illustrated in § 4.

At Fr = 2.1, the flow is no longer characterized by a permanent re-circulation
region but by an extended mixing regime with clearly defined boundaries between
the upflow, downflow and ambient fluid (see figure 6). The inner upflow stream is
short however and the annular shear layer does not merge. The cap region of the
flow is similar to the Fr = 1.4 flow, with periodic non-axisymmetric ejection of fluid
from the cap region. The ejection of dense fluid at one side of the fountain increases
the strength of the local downflow and drives large-scale structures that increase
mixing, as illustrated in Williamson et al. (2008a). This behaviour also sets the period
of oscillation in the fountain height. The outflowing fluid forms an annular vortex
around the cap region in a similar way to the Fr = 1.4 flow re-circulation region. In
figure 6 the pressure contours and shading of φ illustrate the K–H structures at the
top interface and the strong annular vortex at the head of the fountain. The intrusion
forms at the base of the fountain causing a local high-pressure region there.

4. Initial transient flow behaviour
The centreline height of the fountain rises to its maximum and then oscillates

about a lower mean value after which flow statistics are obtained. The time trace
of the source pressure and the maximum penetration height, defined as the point
where φ = 0.5, are given in figure 7. Lin & Armfield (2003) showed that in steady-
low-Froude-number fountain flow, φ =0.5 coincides with uz = 0 and is therefore a
reasonable measure of fountain height in unsteady conditions. The starting rise times
vary according to different time scales.

The initial rise time of high-Froude-number turbulent fountains was shown to scale
on tm ∼ Fr2 empirically by Pantzlaff & Lueptow (1999) and then by Williamson et al.
(2008b) for laminar high-Froude-number fountain flow. The time scale for the weak
flow regime may be obtained using the zero entrainment model proposed by Zhang &
Baddour (1997) and Kaye & Hunt (2006). They assumed direct conversion of kinetic
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Figure 7. Time evolution of fountain height and normalized source pressure head p∗
0 = p0Fr2,

at r = 0 and z =0. Dashed lines indicate p∗
0(t) and solid lines indicate zm(t). (a) Fr = 0.1 is

indicated by thin lines and Fr = 0.4 by thick lines. (b) Fr =0.97 is indicated by thin lines and
Fr = 1.4 by thick lines. In both cases Re = 3494 and Pr = 0.7. Scaling as indicated on axis.

energy to potential energy so U 2
0 = 2σ0Zm giving zm ∼ Fr2. We use the same arguments

for the time scaling, where dimensional time Tm = U0/σ0 giving tm ∼ Fr2, the same as
for the high-Froude-number flow regime. Lin & Armfield (2000a) found that the rise
time of fountain flow over the range 0.1 � Fr � 1.0 followed a tm ∼ Fr2 scaling.
For very weak fountains they obtained tm ∼ Fr4/3 based on dimensional grounds and
confirmed the relation with numerical simulations over the range 0.05 � Fr � 0.2
(Lin & Armfield 2000b). This suggests a two-regime scaling for fountain rise time, a
forced–weak regime where tm ∼ Fr2 and the very weak regime where tm ∼ Fr4/3.

The source pressure is shown to be important in §§ 5 and 6, so is plotted here together
with the penetration height. In figure 7(a) the time trace of fountain penetration height
and source pressure at Fr = 0.1 and Fr = 0.4 are scaled with tm ∼ Fr4/3 and zm ∼ Fr2/3

while in figure 7(b) the results at Fr =0.97 and Fr =1.4 are scaled by tm ∼ Fr2 and
zm ∼ Fr2. Across this Froude number range the flow regime changes so the flow
quantities are not expected to scale well and this is borne out in the results. The rise
time at Fr = 0.1 and Fr = 0.4 are not collapsed by tm ∼ Fr4/3 while the penetration
height performs well but with the contribution of the pressure head reduced at
Fr = 0.4. At Fr = 0.97 and Fr = 1.4 the tm ∼ Fr2 scaling collapses the time scale for
both results well but Zm does not collapse with the zm ∼ Fr2 scaling, derived using
the same arguments. However, if the source pressure component is subtracted from
the total height the difference, zm − p0Fr2 scales with approximately Fr2.

In figure 8, the fountain mean penetration height, defined as the point where the
mean vertical velocity ūz = 0, is plotted against Froude number together with the
other published results for this range of Froude numbers. There is a high degree of
correspondence between the high-Reynolds-number simulations in this study and the
previous results across the entire range of values simulated. The very weak points at
Fr = 0.1 and Fr =0.4 coincide with Lin & Armfield (2000a ,b) Re = 200 results and
their relation zm =1.26Fr2/3 (Lin & Armfield 2000b), not withstanding the difference
in Reynolds numbers between these previous studies. Lin & Armfield (2000a) found
that their numerical results for Fr = 0.2–1.0 were best fitted by a zm ∼ Fr scaling, but
from figure 8 it is clear that this region is part of a transition range between the weak
zm ∼ Fr2 regime and very weak flow zm ∼ Fr2/3. We examine the behaviour of the very
weak regime in § 5 and the transition to the weak regime in § 6.
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Figure 8. Normalized fountain penetration height with Froude number where the dashed
line is 1.26Fr2/3 (Lin & Armfield 2000b), the dotted line 0.94Fr2/3 (Kaye & Hunt 2006), the
thin solid line 0.9Fr2 (Kaye & Hunt 2006) and the thick solid line 2.46Fr (Turner 1966).
Symbols: �, Kaye & Hunt (2006); �, Lin & Armfield (2000b); +, Lin & Armfield (2000a)
(uniform source velocity profile); �, Zhang & Baddour (1998); �, Cresswell & Szczepura
(1993); �, Williamson et al. (2008b); �, the present simulations at Re = 3494 with an unsteady
inlet condition; and � indicate Re = 250 with uniform and parabolic inlet source velocity
profiles, respectively.

5. Very weak flow
The results have been interpolated onto a cylindrical coordinate system (r, z, θ) and

statistics calculated. The terms in the axial momentum equation are plotted against
fountain axial location from the centre of the source to the maximum penetration
height at r = 0 in figure 9. At Fr = 0.1 (figure 9a) advection is negligible and the
flow is primarily a balance between axial pressure gradient and buoyancy. The result
supports the suggestion of Zhang & Baddour (1998) that the relevant length scale
for the flow is Zm = f (Q0, F0) and is not a function of M0.

Very weak flow behaviour is governed by the radial momentum balance and is
directly affected by the intrusion. The effect of viscosity on the very weak flow regime
has been tested with two simulations with uniform inlet velocity profile at the source
for Fr = 0.1 at Re = 250, Pr = 4 and Re = 20, Pr = 50. The Prandtl number has been
varied to ensure diffusive scalar transport, which goes like 1/RePr , and is similar in
the low Reynolds number regime (Lin & Armfield 2003).

The radial momentum balance terms for Fr = 0.1 are given in figure 10(a–c)
together with two definitions of the fountain/intrusion depth. The line of φ = 0.1,
indicated by zφ , is observed to coincide approximately with the top of the upper
mixing layer/ambient interface. z̄, the local depth averaged intrusion height defined
as

z̄(r) =

∫ zm

0

(
1

2π

∫ 2π

0

φ(r, z, θ) dθ

)
dz, (5.1)

is observed to lie between the dense intrusion and the upper mixing layer.
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Figure 9. Vertical momentum balance of Re = 3494 simulations at r = 0 for (a) Fr = 0.1,
Pr = 0.7, (b) Fr = 0.4, Pr = 0.7, (c) Fr = 0.97, Pr = 0.7, (d ) Fr = 1.4, Pr = 0.7 and
(e) Fr = 2.1, Pr = 7.0. Thick line, buoyancy [φ̄]; thin line, advection [(ūr ∂ūz/∂r+ūz ∂ūz/∂z)Fr2];
dashed line, pressure gradient [∂p̄/∂z Fr2]; dotted line, turbulent diffusion [(1/r ∂ru′

zu
′
r/∂r +

∂u′
zu

′
z/∂z)Fr2]. Viscous diffusion [−1/Re(1/r ∂(r∂ūz/∂r)/∂r + ∂2ūz/∂z2)Fr2] is negligible and

not shown. All variables are in non-dimensional form.

All the simulations are unsteady, however, the nature of the unsteadiness is different
for the turbulent and laminar simulations. The high-Reynolds-number case reaches
a quasi-steady flow regime after t = 1.4, where the intrusion behaviour is statistically
steady. The statistics presented in figure 10(c) are obtained by time averaging over
t = 1.4–2.8, enough for 20 K–H structures to move through the intrusion. The two-low-
Reynolds-number simulations do not reach this quasi-steady state and the intrusion
continues to grow with time. The results in figure 10(a,b) are instead azimuthally
averaged at one instant of time and the transient term, which does not go to zero, is
also presented.
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Figure 10. Radial momentum balance given at locations from the fountain source
through the intrusion where radial location is indicated by the lower abscissa and local
momentum balance indicated by upper abscissa labelled Mr . Results given for Fr = 0.1
at (a) Re = 20 and Pr = 50 at t = 2.5, (b) Re = 250 and Pr = 4 at t = 2.5 and (c) Re =
3494 and Pr = 0.7 with statistics averaged over t = 1.4–2.5. The momentum balance
terms are indicated by thick dotted line, [(ūr ∂ūr/∂r + ūz ∂ūr/∂z)Fr2]; thin solid
line, [−1/Re(1/r ∂(r ∂ūr/∂r)/∂r + ∂2ūr/∂z2 − ūr/r

2)Fr2]; thick dashed line, [∂p̄/∂r Fr2]; thick

solid line, [dūr/dt Fr2]; thick dashed–dotted line, [(1/r ∂ru′
ru

′
r/∂r + ∂u′

ru
′
z/∂z − u′

θu
′
θ /r)Fr2].

All terms are non-dimensional. Overlaid is a plot of fountain/intrusion height defined firstly
(z̄) by (5.1) (thick solid line) and secondly (zφ) by the location of φ = 0.1 (thin solid line).
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In the cap region the momentum balance is dominated by the radial pressure
gradient and the radial advection term with viscous effects only important at the
interface and only at low Reynolds number. In all three cases the start of the
intrusion occurs at r ≈ 1.5. From this point onwards the flow behaviour depends
strongly on the Reynolds number.

At Re = 20, the flow decelerates into the intrusion against viscosity and the pressure
gradient continues to drive the flow. By r = 2.5, the flow is predominantly a balance
between viscosity and pressure gradient. The head required to drive the flow against
viscosity continues to increase with penetration of the intrusion so the fountain height
continues to increase. In this way, at Re = 20, the fountain dynamic is one where the
height is directly linked to the depth and extent of the intrusion.

At Re = 250, r between 1.5 and 2.5 viscous effects decelerate the flow with the radial
pressure gradient less significant than at Re = 20. The depth of the intrusion also
increases over this region, coinciding with the subcritical Froude number as shown
in the figure. At r = 3.5 the flow again returns to a balance between viscosity and
pressure gradient and behaves as the Re = 20 flow. In the subcritical region the flow
depth increases with time and will presumably eventually overwhelm the fountain.
The clearly defined diffusive mixing layer above the intrusion is accelerated by viscous
forces.

At Re =3494 the flow is more complex owing to the turbulent mixing in the
intrusion. At r =1.5 momentum is dissipated by viscosity, via (1/Re d2ūr/dz2) and
transported by turbulent diffusion to the upper layer through du′

ru
′
z/dz . The formation

of the lower boundary layer and the upper mixing layer where the flow leaves the
fountain and enters the intrusion creates the double peaked deceleration profile. The
lower peak is a balance between viscosity at the lower wall and turbulent diffusion,
and the upper peak is predominantly a result of mixing between the intrusion and
the upper mixing layer. The radial pressure gradient is significant. In the upper
mixing layer ambient fluid is entrained and accelerated into the intrusion primarily
by turbulent diffusion. At r = 2.5 the upper mixing layer is unchanged but in the
intrusion the pressure gradient is reduced. The flow passes out through the outlet
boundary condition with no observable effect on the simulation.

Also important to the discussion is the local depth averaged Froude number for
the radial flow in the intrusion, Fr r (r). This is illustrated in figure 11 together with
z̄(r), for Fr = 0.97, 0.4 and 0.1 at Re =3494 and additionally for the viscous flow
simulations at Fr = 0.1 at Re = 20 and Re = 250. The non-dimensional quantities are
defined as

Fr r (r) =
ūr (r)Fr√

z̄(r)
(5.2)

where ūr is given by

ūr (r) =

∫ zm

0

(
1/2π

∫ 2π

0

u(r, z, θ)φ(r, z, θ) dθ

)
dz

∫ zm

0

(
1/2π

∫ 2π

0

φ(r, z, θ) dθ

)
dz

, (5.3)

respectively. Figure 11 illustrates the development of the intrusion through the quasi-
steady flow. For Fr = 0.1–0.97 at Re = 3494, the intrusion flow is supercritical through
the extent of the domain simulated. The initial rise and establishment of the flow
causes the intrusion front to form with the local Fr r being supercritical but subcritical
immediately behind the fountain region. After this passes the intrusion extends into
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the domain with constant input of mass flux. The increased viscous dissipation in the
low-Reynolds-number simulations and the increased depth have the effect of forcing
the flow back to a subcritical Fr r away from the intrusion origin. At Re = 250 the
local Fr r maximum occurs at r ≈ 1.4 and is subcritical for r � 1.6. At Re = 20 the flow
is subcritical everywhere and the intrusion is more directly connected with the source.
An additional simulation, not shown here for brevity, was performed at Re = 100 and
found to be fully subcritical also, so the transition between fully subcritical flow and
flow that is critical near the intrusion source occurs in the range Re =100–250.

The scaling for the fountain height can be interpreted from the results as follows:
For Re � 250 the intrusion flow around the source is supercritical and viscous effects at
the source are small. The radial pressure gradient drives radial acceleration such that
1/ρ0 dP/dR = dUrUr/2dR. The pressure head at the centre of the source (Z = 0, R = 0)
is P0 = Zm∆ρg. Where the fountain meets the intrusion at R = Re, Pe ≈ 0. The fountain
fluid accelerates from Ur = 0 to Ue = Q0/Ae from R = 0 to R = Re. In very weak flow
where there is no re-circulation region, Re = R0 (or re = 1). Following Kaye & Hunt
(2006) by using the analogy of critical flow weir flow, the fountain height at R = Re will
be He = 2Zm/3. This gives Ue = Q0/Ae = Q0/2πReHe = 3U0πR2

0/2Zm2πRe. In this way
1/ρ0 (P0 − Pe)/Re ≈ (Ue)

2/2Re so zm ≈ 0.66Fr2/3C2/3
r , where Cr = R0/Re, confirming the

scaling found by Lin & Armfield (2000b) zm = 1.26Fr2/3, and Kaye & Hunt (2006)
zm = 0.94Fr2/3, although with variation in the coefficients.

Figure 10 shows that the pressure gradient does not tend to zero at r = 1 but
continues into the intrusion and is significant until r � 1.5. The full balance for the
pressure gradient at the source must then include the additional backpressure around
the source. In this way where the pressure gradient remaining at the edge of the
source is given by (dp̄/dr)e =(du′

ru
′
z/dz + 1/Re d2ūr/dz2 − dūr ūr/2dr)e. The term

(dp̄/dr)e is a function of Reynolds number and Froude number so would suggest a
relation of the form zm = f (Fr) + f (Re, Fr) where the first term on the right-hand
side is the acceleration term described above and the second term is the additional
effect of the intrusion.

From Re =250 to 3350, the radial pressure gradient around the source at r = 1.5
is comparable in magnitude although the behaviour varies from laminar viscous
flow to a turbulent boundary layer flow. This has the result that zm is only slightly
affected by the Reynolds number. It is clear in figure 8 that the zm measurements
at Re =3494 and Re = 250 both lie on zm = 1.26Fr2/3 for Fr < 0.4 so the Reynolds
number effect is small, constant and has the same Froude number scaling. This is
not surprising as the flow geometry also can be shown to scale with ∼ Fr2/3. Because
Fr r = 1, he = 2zm/3 and zm ∼ Fr2/3, the scaling for the intrusion depth at the source is
he ∼ Fr2/3. The results can then be summarized as zm = (A1 + A2)Fr2/3, where A1 and
A2 are constants representing the separate effects of radial acceleration at the source
and the backpressure from the intrusion, respectively.

In figure 8, the fountain penetration height measurements of Zhang & Baddour
(1998) and Kaye & Hunt (2006) are clearly much smaller than those in the present
study or in Lin & Armfield (2000b). The key difference between these studies is the
nozzle configuration. Zhang & Baddour (1998) and Kaye & Hunt (2006) appear to
use a re-entrant nozzle configuration whereas the others are flush mounted with the
lower wall and are therefore affected by the intrusion.

For Re � 100 the flow is subcritical, viscous and governed by the extent of the
intrusion in a viscous hydraulic balance, a quite different flow which has been
addressed by Huppert (1982) and Snyder & Tait (1995). The present work then
suggests two regimes of flow behaviour with the transition in the range Re = 100–250.
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6. Very weak to weak flow
In the axial momentum balance in figure 9, the transition from very weak flow at

Fr = 0.1 to weak flow at Fr = 2.1 can be seen quantitatively as an increase in the
advection term at the expense of the pressure gradient. The fluid enters the domain
with zero mean radial velocity so the axial acceleration term is zero and the buoyancy
force is balanced by an axial pressure gradient. As the flow rises, it decelerates and
the axial pressure gradient decreases. Continuity requires that the fluid accelerate
radially. The axial advection term rises to its maximum value and then decreases to
zero where the fluid approaches the stagnation point and the flow reverts to a balance
between axial pressure gradient and gravity. Turbulent diffusion is negligible through
the fountain core, only becoming significant at the oscillating top interface with the
ambient fluid for Fr = 1.4 and Fr = 2.1.

A vector plot of the mean flow at Fr = 1.4 in figure 12(a) shows how the flow rises
and flows outwards above the re-circulation zone. In figure 12(b–f ) contour plots of
the balance terms in the radial and axial momentum equations are presented. The
radial acceleration peaks above the re-circulation region at the outflow (r ≈ 1, z ≈ 1.4),
while the axial acceleration peaks just before the cap region.

In the absence of viscous or turbulent diffusion the total pressure pT Fr2 = zm +
ptFr2 =p0Fr2 +1/2(uzFr)2, where pt is the non-dimensional static pressure remaining
at the top of the fountain stagnation point. The source velocity head is a constant so
the behaviour of p0 is examined here.

If the flow can be decomposed into two regions as zm =hc +hr where hc is the non-
dimensional cap region height and hr is the height of the re-circulation zone/upflow
column illustrated in figure 13(b), the two regions may be modelled separately. Using
the very weak flow model, the cap region may be assumed to be hydraulically
controlled so

hc ≈ (p0 − pt )Fr2, (6.1)

and hc =C1(FrCr )
2/3. This leaves

hr ≈ 1
2
(uFr)2, (6.2)

or hr =C2Fr2, which is the zero entrainment scaling. In table 2, hr is defined arbitrarily
as the maximum axial location reached by a Lagrangian particle trajectory, in the
mean flow field, originating from the fountain source at r =0.99. This point also
coincides with the axial location of maximum radial acceleration illustrated in figure
12(e). In the same table the other terms in the hydraulic energy balance between z = 0
and z = zm at r = 0 are given. For the laminar results (6.1) and (6.2) are shown to
hold. The hydraulic balance is not as close for the turbulent simulations results but
this could be an effect of the inlet velocity profile.

The correlation coefficients C1 and C2 are given in the table for both the fully
turbulent simulation results together with uniform inlet velocity laminar simulation
results from Fr = 0.05 to 1.0. For the cap region/very weak flow, C1 decreases from
1.3 to 1.1 in both laminar and turbulent simulations as the influence of the intrusion
is reduced but not to the 0.66 limit suggested in § 5.

Using the source centreline velocity in (6.2) of uz =1.0 for the uniform simulations
and uz = 1.31UB/U0 for the turbulent simulations, the expected values of C2 are 0.5
and 0.79, respectively. The measured values of C2 given in the table are 0.57–0.5 for
the uniform runs and 0.56–0.7 for the non-uniform turbulent profiles.

The radial location of hr , re and the depth of the outflow at this location, he, are
given in the table together with 2hc/3, the depth predicted for critical weir flow and
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Figure 12. Fr = 1.4, Re = 3494, Pr = 0.7 result with (a) mean velocity vectors and velocity
magnitude contours; (b)–(d) contours of axial momentum balance terms [φ̄], [∂p̄/∂z Fr2] and
[(ūr ∂ūz/∂r + ūz ∂ūz/∂z)Fr2], respectively; (e) and (f ) contours of radial momentum balance
terms [∂p̄/∂r Fr2] and [(ūr ∂ūr/∂r + ūz ∂ūr/∂z)Fr2], respectively.

assumed in the scaling model. The comparison is generally very good, supporting
the model assumptions. The variation in behaviour between turbulent and laminar
results suggests the inlet profile may have an affect on this.

The flow in the cap region at Fr = 2.1 is more dynamic and the flow is structurally
different with an extended mixing region, so the approach described to separate the
two regions is not possible. In table 2 the height of the cap region is inferred using
the assumption that hc ≈ p0Fr2 for comparison. There is increased energy loss from
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Fr zm (p0 − pt )Fr2 1/2 (uFr)2 hr hc re he 2hc/3 C1 C2

0.05 0.18 0.18 0.001 0 0.18 1 0.17 0.12 1.3
0.1 0.28 0.27 0.005 0 0.28 1 0.18 0.18 1.3
0.5 0.8 0.67 0.13 0.14 0.66 1.2 0.41 0.44 1.2 0.57
0.75 1.09 0.82 0.28 0.3 0.79 1.31 0.51 0.53 1.1 0.53
1 1.39 0.90 0.50 0.5 0.89 1.35 0.57 0.59 1.1 0.5

0.1 0.27 0.26 0.01 0.00 0.27 1.00 0.15 0.18 1.3
0.40 0.72 0.58 0.13 0.09 0.63 1.13 0.36 0.42 1.3 0.56
0.97 1.58 0.82 0.74 0.60 0.98 1.20 0.64 0.65 1.1 0.64
1.4 2.54 1.01 1.54 1.37 1.17 1.33 0.67 0.78 1.1 0.70
2.1 4.53 1.38 3.43 3.43* 1.38* 1.0* 0.82 0.92 0.84 0.78

Table 2. Hydraulic energy balance at r = 0 and interpreted scaling results for very weak to
weak fountains at Re =250 with uniform source velocity profile (upper set) and Re = 3494
with non-uniform/turbulent inlet profile (lower set). Coefficients are C1 = hc(1/FrCr )

2/3 and
C2 = hr/Fr2. *: not measured, calculated for comparison assuming hc = p0Fr2.
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Figure 13. Contours of total pressure [pT = (1/2)u2 + zφ/Fr2 + p] for (a) parabolic and
(b) uniform source velocity inlet profile at Re = 250 and Fr = 1.0.

turbulent diffusion so the penetration height is less than the source pressure and
centreline momentum flux.

Additional runs were performed at Re =250 and Fr = 0.05, 0.1, 0.5, 0.75, 1.0 for
both parabolic and uniform source velocity profiles. The results presented in figure 8
show that the uniform and parabolic results have nearly the same penetration
height for Fr =0.05–0.1 but above Fr = 0.5 the parabolic profile penetrates a greater
distance. The low-Reynolds-number steady fountain simulations from Williamson
et al. (2008b) are included in this figure with the Froude numbers calculated
assuming fully parabolic velocity profiles. The Reynolds numbers are small ranging
within Re = 56–92. Lin & Armfield (2003) suggested that at these Reynolds and
Froude numbers, the height is increased approximately 10–12 % by viscous effects
(zm = 1.324 + 1.346/Re1/2 for Fr =1; Lin & Armfield 2003, (35)). The measurements
compare well with the parabolic numerical results.

The difference between the penetration heights of the two profiles as a result of
higher centreline velocity is not captured locally in the definition of the Froude
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number, which is a bulk value. The plot of total pressure (pT = 1/2 u2
i + zφ/Fr2 + p)

for parabolic and uniform source velocity profiles at Fr = 1 and Re =250 is given
in figure 13. In both cases there is an absence of viscous dissipation or turbulent
diffusion as demonstrated in figure 9 and the total pressure is conserved through the
fountain height. The higher centreline momentum flux of the parabolic profile means
the fountain reaches a greater height. The convergence of the two profiles at lower
Froude numbers to zm = 1.26Fr2/3 in figure 8 is indicative of the transition to the
hydraulically controlled very weak flow regime.

This result may explain some of the scatter in the range Fr = 1.0–3.0 in figure 8. The
higher Reynolds number simulations in this study at Fr = 0.97, 1.4 and 2.1 coincide
well with Zhang & Baddour (1998) but the penetration heights are greater than the
uniform axisymmetric simulations of Lin & Armfield (2000a) in this region.

7. Conclusions
Turbulent weak fountain flow has been examined over the range Fr =0.1–2.1.

The scaling for the fountain height, the initial rise time behaviour and momentum
balances have shown that there is a continuum of behaviour over this transition
Froude number range, from hydraulically driven buoyancy dominated flow to
momentum dominated flow. The absence of energy dissipation in this flow enables
the fountain penetration height to be described using a simple hydraulic energy
balance, zm = 1/2 u2Fr2 + (p0 − pt )Fr2.

For Fr < 0.4 and Re > 250, the flow is dominated by (p0 − pt )Fr2 and the fountain
height rises to provide a radial pressure gradient which accelerates the fluid away
from the fountain source radially. In this regime zm =A1Fr2/3 + A2Fr2/3. The A1Fr2/3

term represents the scaling of the radial pressure gradient. In very weak wall-
bounded fountain flow, the intrusion is directly connected with the fountain outflow.
Backpressure from the outflow increases the required fountain penetration height and
this is represented in the second term in the scaling (A2Fr2/3). The viscous effects at
the source are small for Re > 250. For Re � 100 the radial outflow is at a subcritical
Froude number everywhere and the flow behaves as a viscous gravity current.

Over the transition range of Fr =0.4–2.1, the flow rises with two regions having
distinct behaviours, an upflow core where the height correlates with h2 ≈ 1/2(uFr)2

and a cap region where very weak flow behaviour is observed. The combined scaling
can be given as zm ∼ C1Fr2/3 + C2Fr2. Over this transition range the effect of source
velocity profile is more significant than Reynolds number effects.

The authors acknowledge the support of the Australian Research Council.
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